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Abstract
We demonstrate that the energy of a system of atoms can be uniquely evaluated
using a series of structure independent, perfectly transferable many-body
potentials. This allows one to compare empirical energy parametrizations on
the basis of the behaviours of their potential expansions. It is shown how the
representations of the energy using many-body potentials, which focuses on the
positional degrees of freedom, and the conventional cluster expansion method,
which focuses on the ordering degrees of freedom in a multicomponent lattice
system, can be merged into a generalized cluster expansion.

1. Introduction

On the basis of the reasoning of Born and Oppenheimer [1] in 1927, many quantum mechanical
calculations of the electronic structure of a system of atoms treat the nuclei as classical point
masses. The energy of a system of atoms is adiabatically parametrized by the positions
of the nuclei. Accurate methods exist for calculating the energy of a few atoms in some
configurations; an overall evaluation of the energy hypersurface, however, is impossible
and, even if it was carried out, one would not gain physical insight. Due to the ever
growing interest in mesoscopic systems, e.g., for the development of advanced materials with
applications in nanotechnology, a wealth of approximations to the many-body problem have
been developed [2–4]. Most such approximations are designed to describe certain aspects
of interest of a given system. The different approaches used to approximate the adiabatic
energy hypersurface may be classified according to three different routes. The first route
decomposes the total energy in many-body potentials, i.e., pair, three-body, four-body, . . ., N-
body potentials. According to the classification of Carlsson [2], these many-body potentials
can also be denoted as cluster potentials. There are two problems associated with many-body
potentials developed along these lines. First, up to now there has been no unique prescription
for constructing for a given system a many-body potential which is perfectly transferable, i.e.,
which can be used for each conceivable configuration of the system, and to the best of our
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knowledge it has not been rigorously proven that such a unique prescription exists. It is one
of the main objectives of the present paper to give an explicit prescription for constructing
perfectly transferable many-body potentials. Second, the many-body potentials in general
exhibit a rather slow convergence. Therefore, a second route is replacing the many-body
potentials by effective potentials that show a faster convergence. Following the classification
of Carlsson [2] we refer to this large class of potentials as cluster functionals. Commonly,
cluster functionals represent the energy as a sum of a pair interaction term and a rest term.
The rest term is formally written as the sum of contributions of single atoms; each of the
contributions of a single atom, however, depends on the surroundings of the atom as it is a
function of atom pairs, triplets, . . .. As will be seen, the various contributions to the rest term
can in some sense be conceived as clever partial summations of the many-body potentials, and
therefore the cluster functionals have an improved convergence behaviour. Again no clear-cut
prescription for constructing cluster functionals exists; they are often constructed according
to physical intuition and therefore their transferability is often limited. A second problem
is that there already exist a great manifold of different cluster functionals, and there is no
systematic way to compare various cluster functionals in an objective manner. It will be the
second objective of the present paper to demonstrate that by using our definition of perfectly
transferable many-body potentials we are in the position to perform such a systematic and
objective comparison.

A third route to the evaluation of the energy is the cluster expansion method which in the
past has been used mainly for systems where the atoms are fixed on certain lattice positions and
where there are only chemical degrees of freedom provided by different possible arrangements
of the various kinds of atoms on the fixed sites. In the cluster expansion method the total
energy is represented as a sum of contributions over all conceivable clusters in the system.
The cluster expansion method was introduced by Sanchez et al [5]. Extensive work was also
done by Zunger et al [6] in an effort to handle the effect of local relaxations and long-range
elastic interactions. For practical calculations the cluster expansion has to be terminated at
a maximum cluster, and it is not clear which clusters have to be kept in such a terminated
cluster expansion. We will show that for systems for which a reasonable cluster functional
exists, we can preselect the relevant clusters of the cluster expansion by using the expansion in
transferable many-body potentials. Furthermore, we will show how the many-body potential
expansion, which often emphasizes the positional degrees of freedom, can be merged with the
cluster expansion method, which was mainly used for chemical degrees of freedom, resulting
in a cluster expansion not confined to lattices.

The outline of this paper is as follows. In section 2 we show how a general potential
expansion can be used as a natural framework for the derivation of analytical approximations
to the many-body problem. Within this framework the various approaches to the many-body
problem can be judged by their physical bases as well as their transferability to different
configurations, e.g., bulk, surfaces and the gas phase. We will demonstrate the usefulness of
the approach in section 4 with two simple but popular analytical potentials. In section 3
the foundations developed in the first section of this paper are used to establish a direct
link between the energy hypersurface, represented in terms of the potential expansion, and
the thermodynamic properties of multicomponent compounds, e.g., the energy of formation,
represented in terms of the cluster expansion. Such a link should allow for a faster theoretical
assessment of the phase diagram of alloys and related temperature dependent properties.

2. Potential expansion

In this section we show that a general potential expansion can be used as a common basis
that allows one to compare the various, very different approaches to the many-body problem.
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A unified treatment of the energy hypersurface of a crystal then allows one to extract the cluster
expansion coefficients as local quantities in section 3.

We denote the total energy of a M particle system using

EM = EM (X1, X2, . . . , X M ) , (1)

where the position RRRn of atom n was grouped together with the species of atom n denoted by
an integer σn , Xn = {RRRn, σn}.3 As the order of labelling the M atoms is arbitrary, the form of
EM must be such that EM is invariant when two labels are exchanged, Xi ↔ X j :

EM
(
X1, . . . , Xi , . . . , X j , . . . , X M

) = EM
(
X1, . . . , X j , . . . , Xi , . . . , X M

)
. (2)

Hence EM is symmetric with respect to Xi ↔ X j . We start from the representation of the
energy EM as an expansion in a series of N-body interaction potentials V (N) via4

EM = EM (X1, X2, . . . , X M ) =
M∑

N=0

E (N)(X1, X2, . . . , X M ), (3)

E (N) = 1

N!

M∑
m1

M∑
m2

· · ·
M∑

mN

V (N)(Xm1 , Xm2 , . . . , XmN ), (4)

where the summation is carried out over pairwise different indices. It is generally assumed [2, 3]
(but to the best knowledge of the authors, nowhere rigorously proved) that the potentials V (N)

can be chosen as being independent of the environment in which the atoms RRR1, RRR2, . . . , RRRN

are embedded, so that they are structure independent and therefore transferable to any atomic
configuration, including all solid and liquid configurations formed by the atoms. The inversion
of equations (3), (4) is straightforward for small values of M [2]. For example, the pair potential
V (2) is calculated from E2 and E1 as

E2(X1, X2) = 1
2

(
V (2)(X1, X2) + V (2)(X2, X1)

)
+ V (1)(X1) + V (1)(X2) + V (0)

Eq. (2)= V (2)(X1, X2) + E1(X1) + E1(X2) − E0, (5)

where we made use of

E1(X1) = V (1)(X1) + V (0). (6)

The explicit calculation of V(N) for general N becomes tedious to carry out along these lines. In
general, equations (3), (4) can be inverted via Möbius inversion [7]. For this transformation we
consider all isolated L-atom clusters contained in an N-atom cluster. We denote the energies of
the L-atom clusters using L = 1, 2, . . . , N by EL . The Möbius inversion of equations (3), (4)
then reads

V (N) (X1, X2, . . . , X N ) =
N∑

L=0

(−1)N−L

L!

N∑
m1

N∑
m2

· · ·
N∑

mL

EL
(
Xm1 , Xm2 , . . . , XmL

)
. (7)

Equation (7) constitutes a unique definition of N-body potentials V (N) which are structure
independent because this equation does not carry any information about the environment of

3 This definition for Xn = {RRRn , σn} will be most useful in accessing transferable potentials that are independent
of their surroundings. In the context of phase diagram calculations of multicomponent alloys one is often only
interested in small displacements of the atom positions with respect to given lattice sites {RRR0

n}. In this case we define
Xn = {RRRn −RRR0

n , σn}. By using this latter definition we arrive at potentials which are adapted to describe, e.g., phonons
or small relaxations, but we lose the perfect transferability of the potentials.
4 It is sometimes argued [2] that a potential expansion converges only slowly with respect to the order of the potentials
and is thus impractical for use in molecular dynamics simulations. We acknowledge this point; however, we focus in
this paper on the comparison and the transferability of various potentials, where equation (7) turns out to be the only
possible systematic definition with such an objective.
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the atom clusters. Once the potentials V (N) have been constructed, they can be used to calculate
the energy E (M) according to equations (3), (4) for any gaseous, liquid or solid state of the
material, i.e., these potentials V (N) are perfectly transferable by construction.

Equation (7) also shows that the potentials are uniquely defined from the energies of
isolated subclusters. Thus in principle the potentials V (N) can be determined from total
energy ab initio calculations for isolated clusters of L = 1, . . . , N atoms without further
approximation.

3. Relation to the cluster expansion method

In the statistical mechanics of multicomponent alloys one commonly simplifies the calculation
of phase diagrams by introducing a lattice. The position of an atom RRRi in this system is assigned
to a lattice site RRR0

i . The remaining degree of freedom is the occupation of each lattice site by one
of the P different kinds of atoms present in the system. Each atomic species is denoted with an
integer value ±p,±(p −1), . . . ,±1, (0) (where 0 is included if P = 2 p + 1). The occupation
of lattice site i is characterized by σi ∈ {±p,±(p−1), . . . ,±1, (0)}. The configuration of the
lattice is given by the occupation vector σσσ = (σ1, σ2, . . . σM ). An orthonormal and complete
set of basis functions �v(σi ) with v = 0, 1, 2, . . . , (P −1) and �0(σi) = 1 is introduced (e.g.,
the first P Chebyshev polynomials [5]):∑

σ

�v1(σ )�v2(σ ) = Pδv1v2 , (8)

P−1∑
v=0

�v(σ1)�v(σ2) = Pδσ1σ2 , (9)

with σ1, σ2 ∈ {±p,±(p − 1), . . . ,±1, (0)}.
The basis for the whole configurational space of M lattice sites is given by the direct

product of the basis functions for all sites:

�(M)
αν (σσσ) = �v1(σ1)�v2(σ2) · · · �vM (σM ). (10)

The lattice sites are grouped in clusters αK = {m1, m2, . . . , m K } with K � M and
m1 < m2 < · · · < m K ; to each of the clustersαK one assigns the vectorsνK = (v1, v2, . . . , vK )

with vl ∈ {1, 2, . . . , (P − 1)}, where the various vl are not necessarily pairwise distinct.
Having established a complete basis in configurational space, the energy of any conceivable
configuration σσσ can be represented as a sum of contributions arising from all possible clusters
αK [5]:

E(σσσ) = J0 +
M∑

K=1

∑
αK

∑
νK

J (K )
αν �(K )

αν (σσσ). (11)

The cluster expansion coefficients J (K )
αν are obtained by projecting the total energy onto the

corresponding cluster function:

J (K )
αν = 〈

E(σσσ)|�(K )
αν (σσσ)

〉
, (12)

where the scalar product of two configuration dependent functions f (σσσ), g(σσσ) is defined as

〈
f (σσσ)|g(σσσ)

〉 = 1

P M

P∑
σ1

P∑
σ2

· · ·
P∑

σM

f (σσσ) · g(σσσ). (13)
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The projection formula (12) can be decomposed into a part involving the positions of a given
cluster αK and a part that is independent of the occupation σσσ αK of cluster αK (denoted by
M − αK ) [10]:

J (K )
αν = 1

P K

∑
σσσαK

�vm1
(σm1)�vm2

(σm2) · · ·�vmK
(σαmK

)WαK , (14)

with

WαK = 1

P M−K

∑
σσσ M−αK

E(α, M − αK ). (15)

The cluster expansion coefficients J (K )
αν depend neither on the composition nor on the

configurationσσσ of the system. The inversion of equation (11) is carried out routinely for simple
lattices, such as fcc and bcc ones. Often, for this purpose, the energy of a set of configurations
σσσ (1),σσσ (2), . . . ,σσσ (N) is calculated ab initio and then used to numerically extract the expansion
coefficients J (K )

αν . This approach, however, becomes tedious for multicomponent alloys or in
restricted geometries, e.g., for surfaces, where many expansion coefficients are expected to be
different from zero and cannot be related by symmetry. The reason for the increased effort
required to calculate the full set of expansion coefficients in complicated geometries compared
to one-atom unit cells lies in the global projection of equation (12): the whole system has to
be taken into account in order to be able to extract the value of an expansion coefficient of a
local cluster.

The representations of the energy in terms of N-body potentials V (N), equations (3), (4),
and according to equation (11) have been considered [2] as two fundamentally distinct energy
representations which focus on the positional and the ordering degrees of freedom. It is
another objective of the present paper to show how the total energy of a system represented
by uniquely defined N-body potentials can be cast in terms of the cluster expansion method.
We thereby arrive at an energy representation for arbitrary chemical and positional degrees
of freedom which has the form of equation (11). This allows us to calculate the expansion
coefficients J (K )

αν from local N-body potentials V (N), in contrast to the global inversion required
in equation (12).

To do this we rewrite the contribution E (N) of all N-body potentials to the total energy of
an M-atom system as defined via equations (3), (4) in the following way:

E (N) = 1

N!

M∑
m1

M∑
m2

· · ·
M∑

mN

V (N)(Xm1 , Xm2 , . . . , XmN )

= 1

N!

∑
m1

∑
m2

· · ·
∑
mN

V (N)
(
RRRm1 , σm1 ; . . . ; RRRmN , σmN

)

= 1

N!

∑
m1m2,...,mN

∑
i1i2,...,iN

V (N)
(
RRRm1 , i1; . . . ; RRRmN , iN

) N∏
l=1

δil ,σml
. (16)

Please note that mi now labels not a lattice site (as in the conventional CE) but an arbitrary site
in space. Inserting for δil ,σml

the completeness relation (9), one finds that the potential V (N)

contributes to the expansion coefficient of the cluster αK (K � N) in an effective way:

V (N
K)(RRR1, σ1; . . . ; RRRK , σK ) = 1

P N−K

1

(N − K )!

×
∑

mK +1,...,mN

∑
σK +1,...,σN

V (N)(RRR1, σ1; . . . ; RRRmN , σmN ). (17)
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The effective potentials V (N
K) are analogous to the effective energies Wα defined in

equation (15); however, the effective potentials V (N
K) are obtained from local potentials V (N)

whereas for the construction of Wα the energy for the whole crystal needs to be evaluated.
The occupation averaged potential V (N

K) is then projected onto the basis of configurational
space with αK = {RRR1, RRR2, . . . , RRRK }:

J (N
K)

αν = 1

P K

∑
σ1...σK

�(K )
αν (σ1, . . . , σK )V (N

K)(RRR1, σ1; . . . ; RRRK , σK ), (18)

and the total cluster expansion coefficient is calculated as the sum of all contributions of the
potentials:

J (K )
αν =

M∑
N=K

J (N
K)

αν . (19)

It becomes obvious from equation (19) that only potentials V (N) with N � K contribute to the
expansion coefficients J (K )

αν . By the contributions with N > K the cluster αK is embedded into
its ‘grey’ averaged surroundings as the sum in equation (17) runs over all possible occupations
of all positions not contained in αK .

In addition to the aesthetic value of having a link between the N-body potential
representation and the CE, equation (19) is also of practical value. Because in any calculation
only a finite number of clusters αN can be involved in the CE, there is always an open question
(which so far has been solved by trial and error) of which of the various possible clusters are the
most essential ones. Provided that there already exists a reasonably reliable empirical N-body
functional for the system under consideration, we can determine via equation (7) the N-body
potential and then via equation (19) the expansion coefficients J (K )

αν . We can thus make a first
guess for the cluster expansion coefficients J (K )

αν which must be used in the construction of a
CE on a lattice system from the energies of reference configurations calculated using ab initio
electron theory.

Often, due to the size mismatch of the constituents of an alloy, the atoms do not take
their ideal lattice positions, but relax into a lower energy state where the atomic positions
are displaced from their ideal lattice sites. The relaxation energy of a given configuration is
defined as the energy difference between the energy of the configuration of atoms on an ideal
undistorted lattice and the energy of the configurations with the whole crystal’s atomic positions
locally relaxed. For many systems, the calculation of phase diagrams requires one to take into
account local relaxations in the cluster expansion coefficients [6]. Equation (19) allows one
to calculate the energetic contribution of relaxations to the cluster expansion coefficients on a
lattice from the many-body potential expansion.

4. Comparison of empirical potentials

As we have established a one-to-one correspondence between the energy of a system and its
potential expansion, we must accept that the convergence of equations (3), (4) with respect to
the order N is determined solely by the structure of the energy function EM . On this footing,
frequently used approaches such as that based on so-called cluster functionals [2],which may be
conceived of as rapidly converging but are in general limited transferable energy representations
in terms of effective N-body interactions, are now regarded as physically motivated partial
summations of special branches of the total energy. We illustrate this viewpoint with two
examples. The embedded atom method [8] approximates the total energy as a function of
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superimposed atomic charge densities ρi j and a repulsive pair potential V (2,rep):

E =
∑

i

F

(∑
j

ρi j

)
+ 1

2

∑
i j

V (2,rep)

i j . (20)

Hence, the many-body potentials are related to the densities ρi j by

M∑
j

ρi j = F−1

(
1

2

M∑
j

(
V (2)

i j − V (2,rep)

i j

)
+

1

3!

M∑
jk

V (3)
i jk + · · ·

)
. (21)

In order for the embedded atom method to yield a truly transferable description of the energy,
equation (21) has to hold for arbitrary values of M . The same requirement holds for effective
pair potential approaches, where the total energy is written as

E = 1
2

∑
i j

fi j V
(2,0)

i j + 1
2

∑
i j

V (2,rep)

i j . (22)

The screening function fi j in general has to fulfil

fi j = V (2)
i j − V (2,rep)

i j

V (2,0)
i j

+
2

3!

∑M
k V (3)

i jk

V (2,0)
i j

+ · · · (23)

for arbitrary values of M . A frequently used simple approximation to fi j in covalent materials
assumes an exponential decay of the screening function [9]:

fi j = exp

(
−B

∑
k

gi jk

)
. (24)

To obtain more compact notation, we furthermore assume gi jk = g jik. Potential expansion
with equation (7) and Si jk = exp(−Bgi jk) − 1 gives

V (1) = V (0) = 0,

V (2)(1, 2) = V (2,0)
12 + V (2,rep)

12 ,

V (3)(1, 2, 3) = S123V (2,0)

12 + S231V (2,0)

23 + S312V (2,0)

31 ,

V (4)(1, 2, 3, 4) = S124 S123V (2,0)

12 + S134 S132V (2,0)

13 + · · · ,
V (5)(1, 2, 3, 4, 5) = S125 S124 S123V (2,0)

12 + · · · ,
V (6)(1, 2, 3, 4, 5, 6) = S126S125 S124 S123V (2,0)

12 + · · · ,
...

(25)

Equation (25) shows that the exponential form of fi j results in an algebraic decay of V (N) with
respect to the screening S. For most practical calculations one assumes Si jk = 0 when the
distances between any two of the coordinates RRRi , RRR j , RRRk are larger than a nearest-neighbour
distance. Then the energy of the effective pair potential method for a fcc crystal is fully mapped
by potentials V (N) with N � 6.

The situation is different for the embedded atom method. We assume [11]

F(x) = f0x ln x . (26)
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Potential expansion using equation (7) yields

V (1) = V (0) = 0,

V (2)(1, 2) = f0
(
ρ12 ln (ρ12) + f0ρ21 ln (ρ21)

)
+ V (2,rep)

12 ,

V (3)(1, 2, 3) = − f0

(
ρ12 ln

(
ρ12

ρ123

)
+ ρ13 ln

(
ρ13

ρ132

)
+ · · ·

)
,

V (4)(1, 2, 3, 4) = f0

(
ρ12 ln

(
ρ12ρ1234

ρ123ρ124

)
+ · · ·

)
,

V (5)(1, 2, 3, 4, 5) = − f0

(
ρ12 ln

(
ρ12 ρ1234ρ1235ρ1245

ρ123ρ124ρ125 ρ12345

)
+ · · ·

)
,

...

(27)

with

ρi,m1,...,mN =
N∑

j=1

ρi,m j . (28)

We note that the embedded atom method can be cast as an effective pair potential scheme
according to equations (22), (23). Second, equation (26) induces a logarithmic decay of
the potentials V (N). If we assume ρi j = 0 when the distances between the coordinates
RRRi , RRR j are larger than a nearest-neighbour distance, in a fcc lattice a potential expansion
requires potentials V (N) with N � 13 in order to fully map the energy of the embedded atom
method. This reflects the physical idea behind the embedded atom method: the energy of an
atom is calculated from the energy of the electron density provided by neighbouring atoms.
Obviously this picture is better suited for the description of a metal. Thus we can decide via
the expansion in N-body potentials for any given form of an energy hypersurface whether
it is more appropriate for the description of a covalent system (then the decay of the V (N)

is more algebraic-like) or a metallic system (then it is more logarithmic-like). A systematic
investigation of more of the currently used cluster functionals along these lines would certainly
be very interesting.

Apart from providing a general framework for a systematic analysis of already existing
cluster functionals, equation (7) also defines a way to obtain perfectly transferable N-body
potentials by ab initio calculations [2]. To do this, the energies EL of isolated L-atom clusters
have to be calculated using ab initio electron theory for a variety of positions; then the data
have to be interpolated by means of appropriately chosen functions. This procedure is certainly
extremely time-consuming and the convergence of the so-obtained N-body potential expansion
may be slow; however, it yields perfectly transferable potentials. To judge the transferability
and accuracy of the potentials in equations (25) and (27),only a few first-principles calculations
are required: if a potential fails to correctly predict the energy of, e.g., a pair of atoms at a
given distance, in a small cluster, at a surface or in bulk material, it is not transferable.

We calculated the pair potential contribution J (2
2) in NiAl explicitly using ab initio electron

theory; see figure 1. Comparison to the nearest-neighbour expansion coefficient J (2) for a fcc
lattice in NiAl [13] shows that many-body interactions screen the contribution of the pair
potential to the pair expansion coefficient by around 70%, which emphasizes the importance
of many-body interactions.

5. Conclusions

In the present paper, the following were achieved:
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Figure 1. The total pair potential contribution J (2
2) to the expansion coefficient J (2) for NiAl

calculated in the local density approximation [12] (open circles). The calculations were carried out

in a box of 21 au length. No correction for interactions across the box was made and J (2
2) was set

to zero at d = 10.5 au. Cluster expansion for NiAl on a fcc lattice gives a value of J (2) ≈ 100 meV
(closed circle) in the nearest-neighbour shell. Thus many-body interactions screen the contributions
of the pair potential to the pair expansion coefficient J (2) by roughly 70%.

• It is generally assumed but to the best of our knowledge nowhere rigorously proved so
far that the adiabatic energy surface of a system of atoms can be evaluated in terms of
a series of structure independent, perfectly transferable many-body potentials. We have
given an explicit proof that this is indeed possible, and we have given a prescription for
obtaining perfectly transferable many-body potentials by means of ab initio total energy
calculations for isolated subclusters of the system.

• So far the cluster expansion method has mainly been applied to describe the ordering
degrees of freedom in multicomponent lattice systems. We showed how the many-body
potential expansion (cluster potentials), which often focuses on the positional degrees
of freedom, can be merged with the cluster expansion method into a generalized cluster
expansion which encompasses both ordering and positional degrees of freedom.

• Often the adiabatic energy hypersurface is parametrized by empirical cluster
functionals [2]. We have demonstrated that mapping given cluster functionals into
perfectly transferable many-body potentials can be used to compare different cluster
functionals.

• We have shown how the coefficients of the cluster expansion method can be related to
cluster functionals via the expansion of the cluster functional in transferable many-body
potentials. Provided that, for example, accurate cluster functionals for a given system
exist, the cluster expansion coefficients can then be constructed from local potentials.
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